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Abstract

When plans are used as programs for controlling the action of autonomous or teleoperated

robots, their abstract representation can easily obscure a great deal of the critical knowledge that

originally led to the planned course of action. In this paper, we highlight an autonomous vehicle

experiment which illustrates how the information barriers created by abstraction can result in
undesirable action. We then show how the same task can be performed correctly using plans as a

resource for action. As a result of this simple change in outlook, we become able to solve problems

requiring opportunistic reaction to unexpected changes in the environment.

I. Introduction

The teleoperation of robotic vehicles in space will require significant autonomous capabilities

within the robotic vehicles. With long delays between sending commands from Earth and receiving

them in space, telerobotic vehicles must be sufficiently responsive to their environment so that

human operators need not be involved with every detail of the robot's motion. Ultimately, robotic

vehicles must have such a high degree of autonomy that they may be capable of maneuvering

through difficult terrain entirely on their own accord, forming their own plans to achieve user-

specified goals.

In the endeavor to develop intelligent autonomous robotic agents capable of interacting with a

dynamic environment, there has been a growing awareness that traditional planning methods may not

be compatible with the demands for real-time performance. Recent efforts to re-evaluate the

relationship between plans and action have led to alternative viewpoints in which plans are not

primarily responsible for controlling a robot's behavior. Work by Brooks, for example, is aimed at

avoiding the use of plans altogether [Br]. In this approach, intelligent action is a manifestation of

many simple processes operating concurrently and coordinated through the context of a complex

environment. While there is no tangible representation for plans in such a system, plans are

implicitly designed into the system through the pre-established interactions between behaviors.

Similarly, Agre and Chapman have shown how a system that determines its actions through the

constant evaluation of its current situation can perform complex tasks that might otherwise have been

thought to require planning [AC 1]. Despite their emphasis on the theme that action is obtained by

always knowing what to do at any instant, Brooks, Agre, and Chapman do not discard the notion

that look-ahead and anticipation of future events are desirable activities. While these activities are
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normallyassociatedwith planning,thereis adifferencein how theresultant"plans"arerepresented
andusedin their systems.

Agre and Chapman,for example,draw a sharpdistinction betweenthe conceptof plansas
communicationandthemoretraditionalviewsof plansasprograms[AC2]. Thekeydifferencelies
in the ideathatplansmustbeconstructedasa resource to the autonomous agent, not as an explicit set
of instructions to be followed [Su]. As a resource, plans must serve as sources of information and

advice to agents that are already fairly competent at dealing with the immediate concerns of their

environment. In this sense, plans are used optionally, and serve only to enhance system

performance. This is a significant departure from the conventional view of plans which puts them in

the role of specifying a distinct course of action to systems which are often incapable of doing
anything without them.

The differences between these two perspectives on planning are clearly evidenced when
information from a map must be used to help guide an autonomous vehicle that must also make

extensive use of sensors for detailed maneuvering and obstacle avoidance. In a plan-driven system,

map-based plans are typically constructed to describe the optimal path that must be followed in order

to arrive at a specified goal location. However, since the vehicle will invariably stray from the ideal

path as it avoids sensed obstacles, the plan must be expressed in an abstract form that allows for

error. In contrast, when map-based plans are represented for use as resources for action, this
abstraction is not necessary. Instead, it is possible to make direct use of all information within the

state-space of the map. As a result, information of all possible alternatives may be retained, allowing
for flexible opportunistic behavior.

Our own experience with the DARPA Autonomous Land Vehicle (ALV) has led to some

valuable insights into some of these issues. In a series of experiments performed by members of the

Hughes Artificial Intelligence Center in August and December of 1987, a number of successful tests

of autonomous cross-county navigation were performed using a system with integrated map and

sensor-based control [Da] [KPR]. Some of the difficulties encountered in these experiments have

pointed out certain consequences of the inappropriate use of abstraction that can occur in plan-driven

systems. In this paper, we highlight one of these experiments to illustrate how the information

barriers created by abstraction can lead to undesirable action. We then show how the same task can

be accomplished without abstraction using plans as a resource for action, and we discuss how this

approach may be extended for more complex problems.

II. The Misuse of Abstraction

In one of the cross-country experiments performed with the ALV we witnessed a surprising

example of how easily plans can be misinterpreted in a plan-driven system. In this experiment, a

very simple abstraction of a map-based plan was used to provide guidance to sensor-based obstacle

avoidance behaviors. As shown in Figure [map plan], the basic mission objective was for the

vehicle to get from one location to another while maintaining radio contact at all times. The map-

based planner generated an appropriate route plan and abstracted a sequence of intermediate sub-

goals to represent the critical points along this path. A portion of this sequence is illustrated in

Figure [map plan] as Goals 1, 2, and 3. Note that the route had to veer specifically around one side

of a rock outcrop in order to avoid loss of radio contact. To accomplish the mission, the sensor-
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based behaviors had primary control of the vehicle so that all obstacles could properly be avoided.

The behavior decisions, however, were always biased in favor of selecting a direction toward the

current map sub-goal whenever possible. As soon as the vehicle got within a specified radius of its

current sub-goal, that goal would be discarded and the next sub-goal would be selected. On paper

and in simulation, it seemed that this approach would be effective.

GOAL 2

ROCK OUTCROP GULLY

GOAL 3

GOAL 1

Figure [map plan]. An ALV route plan expressed as a sequence of intermediate goal points.

When we attempted to perform this mission with the ALV, the deficiencies of our method

became strikingly clear. During the execution of this route, the vehicle achieved Goal 1 but then,

because of local obstacles, was unable to turn appropriately to reach Goal 2. Figure [plan error]

depicts the difference between the desired and actual routes. While this error is clearly apparent from

the map data, the control behaviors had only the abstract route description as their guide, and this

gave no indication that there was any problem with their action. Fortunately, contrary to our

expectations, radio contact was not lost behind the obstacle. The mission could still be completed

successfully if the vehicle were to move onward to Goal 3. Despite this new opportunity, however,

the vehicle continued to persist toward Goal 2 because the abstract route description failed to give

any indication that the original goal sequence was no longer suitable.

GOAL 2

®
ROCK OUTCROP GULLY

GOAL 3

®

"_,u_ ACTUAL ROUTE GOAL 1

Figure [plan error]: Errant vehicle action while executing its route plan.
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This examplehighlights the system'sinability to takeopportunisticadvantageof unexpected
situationswhensuchsituationsarenotproperlyaccountedfor in theabstractplan. We know from
our understandingof the missionconstraintsthat Goal2 wasmerely an intermediatewaypoint
intendedto keepthe vehicleawayfrom theRF shadow.Looking at theabstractplan in isolation,
however,thereis no wayof knowingwhy a particularsub-goalhasbeenestablished.TheGoal2
locationcouldjust aseasilyhavebeenacritical chokepointalongtheonly pathto Goal3. It is only
through our understandingof the underlyingmission constraintsthat we can both identify the
vehicle'sfailureto turnright andseetheopportunitythataroseasaresult.

Theapparentshortcomingof theabstractrouteplan is thatit lacksenvironmentalandmission
constraintsthat arequite evident in the map. A moresuitableplan would haveexplicatedthe
concernsaboutstayingout of theRF shadow.We thereforemightwish to addmoreof this typeof
informationto theplan. Oncewestartaugmentingtheplan,however,wehaveto askhow wemight
ever know when a sufficient amountof information hasbeenaddedto prevent other typesof
mistakes.Consider,for example,thesystem'sfailureto realizethatthe intermediatesub-goalcould
beskippedwhentheopportunityarose.Theproblemarisesbecausethetruepurposeof thesub-goal
wasneverindicated. However,if the state-spaceof theplan couldbeexpandedto includeall the
reasonsfor whenand why theparticular sub-goalwassignificant, thenthe location itself would
become inconsequential. Consequently, the simple sequence of sub-goals is both an
overspecificationand anunderspecification.The problemis inherentin any attemptto build an
abstractionof themapdata.

III. Avoiding Unnecessary Abstraction

In order to minimize the amount of information lost in forming a plan for action, it is best if all

relevant knowledge is organized with respect to a given problem and then, without any further

abstraction, provided in full for use in real-time decision-making. In order for this to be possible,

the plan must no longer be viewed as a program for action, but rather, as a resource to help guide the

decision-making process. When this viewpoint is adopted, there is no longer a need to translate

plans into awkward representations for action. Instead, the original state-space in which the plan is

formulated can be retained, enabling the plan to provide advice to decision-making processes

whenever the current state of the system can be identified within that state-space. We refer to plans

formulated and used in this manner as internalized plans, since they embody the complete search and

look-ahead performed in planning, without providing an abstracted account of an explicit course of
action [Pal.

The difference between the use of internalized plans and conventional abstracted plans is best

illustrated in the context of the previous example. In contrast to the abstract route plan, consider a

gradient description of a plan to achieve the same objectives. As illustrated in Figure [grad], there is

no explicit plan shown, yet one can always find the best way to reach the goal simply by following

the arrows. Such a representation would not ordinarily be thought to be a plan because it provides

no specific course of action. As a resource for guiding action, however, the gradient field

representation is extremely useful. No matter where the vehicle is located, and no matter how it

strays from what might have been the ideal path, turn decisions can always be biased in favor of

following the arrows.
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Figure [grad]: A gradient field representation provides one form of internalized plan.

Upon closer examination of Figure [grad], we can see not only how the mistake of entering the

RF shadow could be avoided, but we see also how the system could be opportunistic should the

vehicle happen to enter the shadow and be able to continue onward. First, when the vehicle had to

make a choice between going left or fight near the bottom of the rock outcrop, the gradient field

would strongly bias its decision in favor of going fight. If the vehicle got too close to the shadow on

the left, the gradient field would actually be telling it to turn around. Further, should the vehicle

happen to be forced to go below the rock outcrop and enter the RF shadow, then it would continue to

be directed toward the final goal despite the radical deviation from its expected path. This type of

behavior is opportunistic in that the vehicle is not constrained to reach any arbitrary pre-established

sub-goals, and therefore all action can be directed exclusively toward achieving the mission

objectives.

A more dramatic illustration of the difference between a conventional route plan and an

internalized plan can be seen in problems requiring the attainment of any of several possible goals.

This type of problem is often referred to as the "Post Office Problem" [Ed] because it can be likened

to the task of finding the shortest route to the nearest of several post offices in a neighborhood. In

the example shown in Figure [multi goal], the mission requires that the vehicle reach either of two

distinct goal locations. The resultant gradient field is computed by propagating a search wavefront

simultaneously from each of the two goals. As the wavefronts meet at a Voronoi edge, a ridge is

created in the gradient field which will cause the vehicle to be guided toward one goal or the other

depending on which side of the ridge it happens to be located.

Clearly, it would be difficult for an abstract route plan to capture the essence of choice contained

in the gradient field representation. If we were to produce a route plan, we would invariably have to

select a route to the closest goal, as shown in Figure [multi goal]. Once such a choice is made,

however, we have discarded all that is known about the alternate goal even though that goal was

nearly as close as the one selected. In contrast, by using the gradient field directly, the choice of
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goals may be made during the execution of the mission. Without having made an a priori selection

of goals, the best choice may be made at every instant in time, regardless of how the vehicle might
stray while avoiding obstacles.

SEARCH HORIZON

Figure [multi goal]: The gradient field provides a useful internalized plan for reaching

either of two goals.

The gradient field is an ideal example of an internalized plan because the map-grid state-space in

which the original problem is formulated is the same state-space in which the plan is represented.

The gradient field, in fact, is a natural by-product of existing route planning algorithms [MPK].

These algorithms begin by assigning a cost to each grid cell of a digital terrain map. By associating

high costs with locations that are undesirable according to mission criteria, a combination of mission

constraints can be represented. Whether an A* [Ni], or Dijkstra [Di] search algorithm is employed in

the cost grid, the net result of the search is a score for each grid cell, indicating the minimum cost

remaining to get from that cell to the goal. From any given grid cell, the best incremental step to get

to the goal is the neighboring grid cell which has the lowest score. Ordinarily, when we use these

scores to compute a standard route plan, we simply begin at the starting point and locally choose the

lowest-score adjacent cell until we finally reach the goal. The record of our steps along the way

gives us the minimum cost path to the goal. If we look at these scores in a slightly different way, we

see that the best path to the goal from any grid cell may be determined by selecting the direction of

the lowest-score adjacent cell. Thus, without any further abstraction, search in the map-grid can

provide a useful resource for action.

IV. Using Plans as Resources

The method of use of a gradient field is an important factor in establishing it as an internalized

plan representation. Since a digital terrain map generally cannot provide adequate resolution to
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supportdetailedmaneuveringaroundsmallobstacles,there is inevitably a need to incorporate the

advice provided by the gradient field into real-time decision-making processes which are attending to

immediate sensory data. While, ordinarily, a single abstract route plan is generated, some

approaches have taken advantage of a gradient field in order to quickly generate new route plans

should the constraints of an initial plan be violated [LMD] [CF]. Problems with establishing and

monitoring these constraints, however, are still unavoidable. In contrast, use of the gradient field as

an internalized plan requires that the real-time decision-making processes continuously attempt to

locate the system within the state-space of the plan and bias each decision in favor of the

recommended course of action. The absence of an explicit course of action means that no arbitrary

plan constraints need be established or monitored. The plan is a resource, providing suggestions for

preferred action but never actually controlling the system. If, for any reason, no suggestion is

available from the plan, the real-time decision-making processes must proceed in a reasonable

manner on their own accord.

Another vector field type of representation, the artificial potential field, appears superficially

very similar to the gradient field and it also is used for robot navigation and obstacle avoidance

[Kr][Kh][Ar]. The basic differences, though, between how these two types of representations are

constructed and used sheds further light on what it means for a plan to serve as a resource for action.

The computation of potential fields is generally based on a superposition model in which charges are

distributed such that repulsive forces are generated near obstacles and attractive forces are generated

near goals. Superposition allows the potential field vector at any point to be computed quickly by

adding up the contributions from each charge. The resultant field, however, does not represent an

optimal path, and may easily contain local minima and traps. In contrast, the gradient field is

computed from a more time consuming graph search process. As a result of this search, the gradient
field has no local minima and will always yield the set of all optimal paths to the goal.

A more significant distinction between gradient fields and potential fields, however, is in how

they are used. Often, when potential field methods are employed for navigation, the potential field is

used for direct control of action. All sensory information is compiled into a single representation

which is suitable for modeling an appropriate distribution of charges. The local potential field forces

are then continuously computed at the location of the vehicle, and these forces are used directly to

compute the desired motion. On the other hand, as internalized plans, gradient fields are never used

to provide direct control of the vehicle. Instead, they are merely an additional source of information

provided to a set of real-time decision-making processes. Since these processes can make use of

many disjointed representations of the world in order to control the vehicle, there is never a need for

all features of the environment to be abstracted into a single representational framework.

It is helpful to view internalized plans as though they were sources of supplementary sensory

input data. From this perspective, it is clear that action is not controlled by plans any more than it is

by sensory input. Instead, the system must be viewed as an entity which interacts with its

environment, responding to both intemal and external information sources. The gradient field plan,

for example, can be thought of as a phantom compass that always gives a general idea of the right

way to go. Just like other sensors, data from this internal sensor influences action but is never used

to the exclusion of other sensory data. At any given time, however, a single information source can

have significant influence over system behavior if need be. Just as an external sensor can be used to

ensure that the vehicle never runs into obstacles, an internalized plan can be used to ensure that
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mission constraints are not violated. Thus, despite the fact that there is no top-down control, the
system can adhere to high level mission requirements.

V. Multiple Internalized Plans

A significant advantage of using internalized plans as resources for action is that it is possible to

use multiple internalized plans simultaneously. Each plan can contribute an additional piece of advice

which can enhance the overall performance of the system. In this way, different plans may be

formulated in incompatible state-spaces without the need to merge these state-spaces through
abstraction.

We can consider as an example, the combined use of map-based plans with plans based on
symbolic mission constraint data. In the case of the RF shadow problem, a constraint to maintain

radio contact may be derived from mission knowledge. If this knowledge is used in conjunction

with a signal strength sensor, then whenever the vehicle enters an RF shadow, it can immediately

back up in order to regain contact. In the absence of such problems, the gradient field produced

from map data can constantly provide advice on which way to go. An unexpected loss of radio

contact would then be treated much like an encounter with an obstacle. The vehicle would have to

make special maneuvers in order to regain contact and ensure that the same mistake would not be

repeated. After this, the map-based plan would regain primary influence.

There are also many cases in which it might be desirable to use multiple internalized plans

formulated within the same state-space. For example, a gradient field plan could be augmented with

information about the amount of fuel and time required to get from each grid-square to the goal.

While this information could not directly indicate a course of action, it might allow available fuel and

time resources to be monitored constantly and compared with expected needs. If there were barely

enough fuel to succeed but plenty of time available, the vehicle might be able to switch to a simple

fuel conserving strategy such as reducing its speed. If time and fuel were both in short supply, the

gradient field might need to be re-computed, placing more emphasis on conserving fuel and time

resources and possibly less emphasis on other factors such as vehicle safety.

Another form of internalized plan exploits the map as a resource for action by probing it directly

during execution. As the vehicle is traveling, the portion of the map corresponding to the area just in
front of the vehicle is examined to determine what types of features should be detected. This

understanding of the local environment can have a direct bearing on how sensor data is interpreted

for action. Remember, for example, the problem illustrated earlier in Figure [plan error]. Here, one

of the main reasons the vehicle failed to avoid the RF shadow was that its sensors indicated a clear

path in this area. This error could be overcome by differentiating between obstacles that are

observable and those that are not, and then appropriately discounting sensor readings that are known

to be inapplicable. Thus, by treating the map as if it were a sensor, the value of real sensor data can

be greatly enhanced.

A great diversity of behavior may also be gained by dynamically combining information from

multiple gradient fields. Consider, for example, two independent gradient fields, one which can

guide a vehicle along a safe, well hidden route, and another which can lead the vehicle to nearby

observation points. We can imagine that the vehicle is guided by the safe gradient field until the time

comes for it to make an observation. Then, the gradient field for getting to observation points would
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becometheprimaryguidingfactor. Suchagradientfield, formedsimilar to thefield inFigure[multi
goal], would lead the vehicle to the nearestof severalpossibleobservation points. Once an
observationpoint had beenreachedandobservationdatacollected,the safegradientfield would
againbeusedfor guidance.Usingsuchacombinationof internalizedplansallowstheperformance
of tasksthat would bedifficult to accomplishwith a symbolicplan. Without anexplicit plan for
action,it is the interplaybetweenthevehicleandits environmentthat determineshow the mission
will ultimatelybecarriedout.

VI. Conclusion

Although abstraction is necessary if we are to provide organization and structure to the vast

amounts of information available to an intelligent agent, we have seen examples in which the

abstraction of plans can obscure their true intent and result in serious failures. In light of these issues

we must ask whether forming the abstraction was really necessary or whether it was merely an

artifact of an approach in which plans are regarded as programs rather than as resources for action.

Using internalized plans, we have shown that with no abstraction of the map-based plan, we can
obtain an ideal resource for action.

Just as the grid of a digital terrain map is an abstraction of the Earth's surface, abstraction may

be used to create other state-spaces which are suitable to use for planning. In many cases, however,

it may be best not to attempt the fusion of information from different sources if an excessive degree

of abstraction is required to do so. Instead, state-spaces should be formed to suit the type of

information available, and once planning is performed in these state-spaces, no further abstraction of

the results should be performed. The unabstracted product of planning search provides a measure of

desirability for transitions from one state to the next, and this measure may be used directly as a

resource for action.
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